
www.manaraa.com

A Lightweight Secure Cyber Foraging Infrastructure for Resource-Constrained
Devices

Sachin Goyal and John Carter

School of Computing
University of Utah�

sgoyal, retrac � @cs.utah.edu

Abstract

Resource-constrained embedded and mobile devices are
becoming increasingly common. Cyber foraging, which al-
lows such devices to offload computation to less resource-
constrained surrogate machines, enables new and interest-
ing applications for these devices. In this paper we describe
a surrogate infrastructure based on virtual machine tech-
nology that allows resource-constrainted devices to utilize
a surrogate’s compute, network, and storage resources. Af-
ter describing the design of our surrogate infrastructure, we
demonstrate how it can be used to support real-time speech
recognition and a synthetic web services application. Using
a surrogate reduces the response time of speech recognition
by a factor of 200 while reducing the energy drain on the
client device by a factor of 60. Using a surrogate reduces
the response time and energy drain on the client by factors
of 21 and 25, respectively, for the web services application.

1. Introduction

In recent years, there has been an explosion of small
computing devices, e.g., PDAs, cell phones, sensors, and
a plethora of embedded devices. At the same time,
network connectivity has become ubiquitous, even for
these small devices. Such devices are typically resource-
constrained, with limited energy, computation, memory,
storage, and/or network resources. However, these lim-
itations can be masked by utilizing the resources of less
resource-constrained computers, a concept called surrogate
computing or cyber foraging [15]. In a cyber foraging sys-
tem, a surrogate machine makes its resources available to
client devices to perform tasks on their behalf. We propose
to use cyber foraging to let resource-constrained devices run
applications and services that cannot be run on the small de-
vices themselves due to lack of some resource(s). This pa-

per describes a surrogate infrastructure that we are building
to support this kind of cyber foraging.

Cyber foraging enables resource-constrained devices to
“run” interesting resource-intensive applications that are be-
yond their own capabilities. For example, suppose you
wanted to use speech or gesture recognition as inputs to
a future PDA. Unfortunately, speech and gesture recogni-
tion are compute- and power-intensive operations, running
far slower than real time on low-power devices [11]. Us-
ing cyber foraging, a PDA could capture the voice or ges-
ture data and send it to a powerful surrogate computer to do
the recognition. Alternatively, consider a future smart home
environment, where tiny special-purpose embedded devices
can utilize the resources of powerful desktop computers to
perform interesting tasks that the devices themselves are in-
capable of performing. In addition to enabling new applica-
tions, cyber foraging can decrease the storage, battery, and
computation requirements of embedded or mobile devices,
thereby decreasing their size, complexity, and cost. Such
devices would need only enough local resources to perform
their common tasks, and could use surrogate resources to
perform more complex or less common tasks.

Utilizing the idea of cyber foraging requires several chal-
lenges to be overcome, including:

1. developing mechanisms whereby a potential surrogate
can make some of its resources available to resource-
constrained clients,

2. providing a means for surrogates to advertise their
availability and clients to locate surrogates with appro-
priate available resources,

3. developing a mechanism whereby clients can transfer
tasks to the surrogate,

4. making the remote execution of surrogate tasks be
(largely) transparent and easy to program, and

www.manaraa.com

5. developing security and trust mechanisms so that sur-
rogates can be assured that they (and their neighbors)
will not be abused by surrogate computations.

We envision cyber foraging being used as follows. A
PDA user clicks on the icon associated with an application
configured to run, at least partially, on a surrogate machine.
If the OS has not already obtained access to a surrogate,
it invokes a surrogate acquisition module, which locates an
appropriate surrogate, establishes a service contract with the
surrogate for a particular amount of resources, and estab-
lishes a security context so that only the client can access
the surrogate. In our system, the client is given root ac-
cess to a virtual machine instance, and can download, in-
stall, and execute arbitrary applications or services, subject
to negotiated resource limits. To invoke an application on
the surrogate, the client ships a small program to a daemon
listening at a known port on the surrogate, which runs the
program on behalf of the client. Typically, this program is
a shell script that downloads the real application over the
Internet, installs it, and runs it. Once the surrogate portion
of the application is installed on the surrogate, the appli-
cation launches the client interface on the device (if any),
transparently ships input data to the surrogate portion of the
application, collects responses, and outputs them through
the client user interface. We provide more details on the
execution environment in Section 3.

A major goal of our work is to support cyber foraging on
a conventional platform, without a large middleware layer,
and demonstrate its use on real applications and systems. To
do so, we build our surrogate framework on top of widely
available technology. We use machine virtualization tech-
nology (VServer [1] and Xen [4]) to provide basic isola-
tion. We use publicly available encryption technologies,
both public and private key, as the foundation of our secu-
rity and authentication infrastructure. We use a lightweight
discovery protocol to locate potential surrogates.

To demonstrate the value of our cyber foraging frame-
work, we evaluate it using a Sharp Zaurus PDA as a client
and a RedHat Linux PC as a surrogate. We use cyber for-
aging to enable the Zaurus to perform continuous speech
recognition using the sphinx2 [8] system from CMU and
to perform a synthetic web services application wherein the
surrogate sifts through 19 megabytes of data on behalf of
the client. We find that using a surrogate reduces the re-
sponse time of the compute-intensive speech recognizer by
a factor of 200, while reducing the energy drain on the Za-
urus by a factor of 60. For the network-intensive synthetic
web services, using a surrogate reduces the response time
by a factor of 21, while reducing the energy drain on the
Zaurus by a factor of 25.

Our main contributions are as follows:

� We build a practical system to support cyber foraging

with realistic notions of trust, security, and usability.

� We demonstrate the value of using virtual machine
technology as the basis for building a surrogate infras-
tructure.

� We show that interesting applications can be enabled
even using only trusted computers available to us (e.g.,
our home PC or nearby office PC).

� We demonstrate experimentally the performance and
energy saving potential of cyber foraging for a simple
system involving a Sharp Zaurus client and a Linux PC
surrogate.

2. Related Work

The basic idea of using surrogates to support pervasive
computing was introduced in Satyanarayanan’s paper on the
challenges of pervasive computing [15]. To support this vi-
sion, Flinn et.al. built Spectra [5, 6], a remote execution en-
vironment that allows a mobile device to use the processing
power of a nearby surrogate computer. Spectra runs on top
of Coda [9] and Odyssey [13]. Spectra monitors application
resource usage and the availability of resources in the local
environment to decide when and where to utilize cyber for-
aging. Balan et.al. [3] extended Spectra to support applica-
tion partitioning, and show that application-specific knowl-
edge regarding how to partition an application between a
client and a surrogate can be captured in a compact form.

Our work is orthogonal to these efforts. Our focus is on
building a cyber foraging infrastructure out of commodity
systems and establishing secure surrogate sessions dynam-
ically. We do not require clients and surrogates to share a
file system (e.g., Coda) or require the client to run a rel-
atively heavyweight middleware system. Our clients and
surrogates do not share a common file system, so we rely on
the surrogate being connected to the Internet to locate and
download client application code. We also address security
issues to allow only authorized users to utilize the services
of the surrogates.

Messer [12] developed a system for dynamically parti-
tioning Java programs and offloading pieces of them to sur-
rogates based on memory and processing constraints. How-
ever, their approach entails significant networking over-
head, and thus energy consumption, because the client and
surrogate portions of program are highly coupled.

In contrast to prior work on automatic application parti-
tioning, we rely on application writers to partition applica-
tions at development time and assume that applications are
split in a way that mitigates client-surrogate communica-
tion. Thin clients have limited resources and IO interfaces,
so developers writing applications for these devices already
tune them carefully. Using our simple surrogate-enabling

www.manaraa.com

library, developers can easily build two versions of their ap-
plications, a low-fidelity option for when no surrogate is
available and a high-fidelity one that exploits surrogates.
We expect that a common strategy will entail running most
of the application on the surrogate and using the client for
input-output. Cyber foraging is most useful for applications
that can be divided into loosely-coupled components; other-
wise the cost of communication between the client and the
surrogate will offset the performance or energy benefits of
using a surrogate. Conveniently, many applications fall into
this category, including perception processing (e.g., speech
and gesture recognition), data mining (e.g., semantic web
and web services operations), sensor aggregation, distilla-
tion proxies, and many smart home applications.

3. System Design

Our goal is to create a system that can be deployed in
existing computing environments to enable cyber foraging
without requiring a heavyweight middleware system.

3.1. Overview

In our system, there are clients and surrogates. Clients
are typically resource-constrained devices with some form
of networking capability, e.g., a PDA, mote, or cell phone.
Potentially constrained resources include energy, compute
power, storage, and network bandwidth. Note that while
the examples in this paper assume clients with limited ca-
pabilities, a client could be a desktop computer that wishes
to harness the compute capabilities of hundreds of other
desktop computers, ala the “Grid.” Surrogates are typi-
cally resource-rich devices that are willing to run programs
and/or provide storage on behalf of clients. Surrogates
might be a desktop PC available via the local wireless LAN
(e.g., in a smart home, office, or commercial hotspot envi-
ronment) or might be your home PC or a commercial sur-
rogate connected via the Internet. For our work, we assume
that the surrogate is connected to the Internet via a high-
speed network. Figure 1 shows a simple cyber foraging
scenario where a PDA client moves some subtask to a lo-
cal surrogate machine.

For this design to be useful and gain wide acceptance,
many challenges must be overcome, including:

1. Clients should be able to specify their requirements for
a surrogate server easily and locate a suitable surrogate
in real time.

2. Surrogates must be able to limit the use of their re-
sources (e.g., cpu time, memory, file storage, and net-
work bandwidth) by client applications.

3. Clients should be able to install and execute arbitrary
applications and services.

Figure 1. A cyber foraging scenario

4. The application interfaces for cyber foraging should be
simple and easy to use.

5. There must be sufficient security and privacy guaran-
tees that both clients and surrogates will be willing to
take part in the infrastructure.

We discuss our solutions to these challenges throughout the
remainder of this section. We are investigating solutions to
other challenges, such as developing a trust model that al-
lows entities to decide how to operate based on how much
they trust each other and developing a cost model to support
resource management and enable commercial surrogates,
but this work is beyond the scope of this paper.

3.2. Surrogate Design

Surrogates can be implemented in multiple ways. We
choose to use virtual machine technology. Virtual ma-
chine technology allows a single surrogate machine to run
a configurable number of independent virtual servers with
greater greater isolation, flexibility, resource control, and
ease of cleanup than simply running surrogate processes di-
rectly on top of a standard Unix box. In terms of isolation,
client applications running on different virtual machines
cannot directly interfere with one another, nor can they ac-
cess resources reserved for the surrogate machine. Different
clients can install arbitrary applications, packages, and even
kernel patches, without interfering with other clients or the
base surrogate. Letting clients install arbitrary code on their
virtual machine provides tremendous flexibility – what they
can do is not limited by what some middleware layer sup-
ports. The virtual machine monitor can enforce resource
controls (e.g., disk quota, cpu share, and physical memory

www.manaraa.com

allocation) on a per-VM basis, which allows allows individ-
ual clients to share the surrogate machine fairly. This design
allows normal work to proceed on the surrogate without un-
due impact by surrogate clients. Finally, it is easy to clean
up after a client – the surrogate host system simply shuts
down the virtual server instance and restores the associated
disk partition to its original (clean) state.

Currently we support two types of virtual machines:
Linux-Vserver [1] and Xen [4]. Virtual servers under Linux-
Vserver share a single kernel instance. Isolation is provided
by OS modifications that encapsulate groups of processes
called contexts. Each virtual server runs in its own root
file system (chroot’ed), is provided its own IP address,
and can only access the files, processes, and IPC primitives
owned by it. Xen para-virtualizes an x86 platform, which
allows multiple independent OS kernels (currently Linux or
BSD1) to run on a single machine. Each OS instance ac-
cesses hardware through virtualized device drivers.

In general, Xen provides a higher degree of isolation and
security than Vserver, at the cost of additional run time
overhead and a slower startup. The Xen VM monitor al-
lows us to allocate physical memory between various vir-
tual servers and supports CPU schedulers that fairly share
the CPU cycles. Vserver currently provides only basic
hard limit controls for CPU and memory sharing, but ef-
forts are underway to add functionality developed as part
of the class-based kernel resource management (CKRM)
project [2]. We plan to use Xen when clients and surrogates
do not fully trust one another or we require more compre-
hensive resource controls and to use Vserver for mutually
trusting clients and surrogates.

Language based virtual machines, e.g. Java, can provide
some of the same features, but restricts the flexibility of the
system to use programs written in that language only.

3.3. Service Discovery

To utilize the surrogate infrastructure, clients must first
locate a suitable surrogate with the help of a service discov-
ery system. We employ a simple service discovery server
that allows surrogates to register themselves using an XML-
like description of their capabilities, e.g.,

<service> surrogate
<OS> Linux

<distribution> Redhat
<version> 9.0 </version>

</distribution>
<distribution> Debian

<version> 3.0 </version>
</distribution>

</OS>
</service>

1A Windows XP version exists, but is not publicly available.

In this example, the surrogate offers clients instances of two
Linux distributions, Redhat 9.0 and Debian 3.0. Clients
locate surrogates by querying the service discovery server
using a similar XML-like notation. The service discovery
server matchs requests against registered surrogates. In the
future, we plan to adopt an existing service discovery mech-
anism, e.g., the Service Location Protocol [7] and extend
our lookup mechanism to consider issues such as surrogate
load.

Currently we expect programmers to make conservative
estimates of application resource requirements based on ap-
plication knowledge or simple profiling. For example, for
the speech recognition application a coarse estimate could
be obtained by running top and observing typical CPU and
memory usage patterns, and then a modest margin of error
(e.g., 25-50%) could be added to the request. In the fu-
ture, we plan to investigate the value of more sophisticated
profiling and history-based tools. Accurately predicting the
resource requirements of an application is an area of active
ongoing research area in both the embedded and computa-
tional grid domain that we plan to follow closely.

3.4. Control Flow

Figure 2 shows a typical client-surrogate control flow:

1. Service Discovery Request: The client sends a mes-
sage to the service discovery server to find an appro-
priate surrogate.

2. Service Discovery Reply: The service discovery
server responds with the IP Address and port number
of the surrogate’s surrogate manager process, which
listens for client connection requests.

3. Service Start Request: the client connects to the sur-
rogate manager process and requests a virtual server
with specific resource guarantees. The surrogate man-
ager first authenticates the client (see Section 4). If
the client is authorized to use this surrogate, the surro-
gate manager processes the client resource request (de-
scribed via an XML-like notation) and, if adequate re-
sources are available, establishes a contract to provide
service for a fixed duration. The maximum number of
virtual server instances and the maximum machine re-
sources that a surrogate is willing to provide to clients
are configurable.

4. Virtual Server Start: The surrogate manager main-
tains root partition images for each available OS (e.g.,
Linux Redhat 9 or BSD). In response to an authorized
client request, it dynamically initializes a preallocated
root partition with the appropriate root image and starts
a new virtual server. It takes more than a minute to ini-
tialize a one GB root partition. To reduce this setup

www.manaraa.com

Figure 2. A typical client-surrogate control flow

overhead, we maintain a pool of preinitialized parti-
tions to hide the root image copy time in the common
case. Each virtual server is allocated its own IP ad-
dress.

5. Service Start Response: Once the new virtual server
is running, the surrogate manager returns the IP ad-
dress of the virtual server to client.

6. Sub Task Configuration Request: Each virtual server
is configured to run a virtual server manager (VSM)
that handles requests for surrogate operations from its
client. To invoke an operation on a surrogate, the
client sends a Sub Task Configuration Request to the
virtual server manager. Client requests consist of a
URL that points to a program that the client wants
the VSM to run on its behalf. Typically, the program
is a shell script that downloads the necessary soft-
ware/packages, installs them, and then invokes them.
For example, in Section 5 we describe an experiment
that installing a Sphinx2 voice recognition server on
the surrogate and having it accept client voice recogni-
tion requests on a well known port. In addition the
VSM, the virtual server runs a secure shell daemon
(sshd) set up so that the client can log on as root
and manually install and invoke any operations they
wish.

7. Service Termination: When the client explicitly ter-
minates the surrogate or when the reserved interval ex-
pires, we clean up the virtual server by reinstalling
its root file system with a clean image. Wiping the
partition removes any changes made by the surro-
gate, thereby preserving privacy and protecting future
clients from any malicious software installed by the
client.

We anticipate that some clients will use the same sur-
rogate to perform the same operation multiple times, e.g.,
a mobile user may use their home PC as a surrogate when
traveling. To improve the performance of this common sce-
nario, we let trusted users save customized root partition im-
ages with all necessary packages, applications, and system
boot up scripts on the surrogate. We allow the same user
(identified by their public key) to use request this image be
installed when they request a virtual server. We are planning
to add a surrogate cache whereby surrogates cache pack-
ages that are often downloaded so that they can be retrieved
locally. Both of these optimizations reduce the startup over-
head of instantiating a surrogate virtual server.

3.5. Client Interface

To support the functionality described above, we provide
a simple client library that supports the following opera-
tions:

� get surrogate(): Takes as input the IP address of a sur-
rogate server and a service description string. Returns
a success code. If successful, the IP address of the vir-
tual server is also returned. If the client has an active
surrogate server, its IP address is returned. Otherwise,
a new virtual server is allocated as described in Sec-
tion 3.4 and its IP address is returned.

� subtask conf request: Takes as input the URL where
a program that the client wishes to run can be found,
which is sent as a subtask configuration request to ap-
propriate virtual server manager. Returns a success
code.

� get virtual server ip: Returns the IP address of the
active surrogate virtual server, if any.

www.manaraa.com

To enable client-side scripting, these functions are also
provided as programs and the configuration information
(e.g., IP address of current surrogate server) is available
via environment variables. In addition, as described in Sec-
tion 3.4, users can use ssh to login to the active virtual
server as root and invoke operations directly.

If the client wishes, a single virtual server can support
multiple clients or multiple users. The multiple clients can
share the same private key (e.g., using the certificate mech-
anism described in Section 4), or the first client can install
addition public keys in the database of authorized clients
for this virtual server. Similarly, multiple users can be sup-
ported by having the first user, who has root access, cre-
ate additional accounts for additional users. This capability
lets clients instantiate servers on the surrogate that can be
accessed by multiple users, e.g., a game server that other
people can contact and use.

4. Security

Two basic problems that must be addressed in a surro-
gate infrastructure are (i) how to ensure that only authorized
clients can allocate a virtual server and (ii) how to ensure
that a surrogate virtual server is usable only by the client for
which it was created. Currently we assume a pre-existing
trust relation between clients and surrogates, e.g. a user
using his home/office computers as surrogates or a univer-
sity/company providing surrogate services to its employees.
Commercial deployment of surrogate services, e.g., allow-
ing a roaming user to acquire surrogate services from on an
untrusted for-pay surrogate situated at a nearby cyber cafe,
would require features like trust models and payment sys-
tems that we do not currently address. We plan to explore
such mechanisms as future work. We envision a wide diver-
sity of devices with different operating systems using our
infrastructure, so we employ widely available and verified
cryptography and authentication solutions whenever possi-
ble

Instead of selecting any specific authentication mecha-
nism, we provide a simple but flexible authentication frame-
work that can support multiple mechanisms. Clients can
specify their preferred authentication mechanism (auth-
type) as part of the Service Start Request sent to the sur-
rogate manager. Currently we support only a single authen-
tication mechanism, but plan to add support for additional
mechanisms as future work. For example, we are consider-
ing adding support for authentication based on shared secret
keys to support devices for which public key encryption is
too compute-intensive, e.g., motes. In this section, we dis-
cuss the authentication mechanism that we employ in the
current prototype.

4.1. Public Key based Authorization

Our current prototype supports a simple authentication
mechanism whereby surrogates maintain an authorization
list containing the public keys of authorized clients. We
chose to employ a public key base system because it is
easy to distribute public keys without worrying about confi-
dentiality. Our current protocol utilizes SSL/TLS and SSH
for communication with the surrogate manager and the vir-
tual server respectively, because they are well understood
and widely available secure protocols. Also, we envision
many end-users using ssh for interactive surrogate ses-
sions, because it allows them to manually configure the vir-
tual servers via a well understood shell interface.

To initiate a surrogate request, the client establishes a
SSL/TLS session with the surrogate manager. We employ a
low overhead TLS cipher (TLS RSA WITH NULL MD5)
and and client side authentication to provide endpoint
authentication and to ensure the integrity of data ex-
changed [14]. We do not encrypt the data sent in this ses-
sion, because confidentiality is not necessary and bulk en-
cryption would impose a significant performance and en-
ergy load on resource constrained clients.

Once the session is established, the surrogate manager
checks to see if the client’s public key is in its list of au-
thorized clients. If it is, the surrogate manager allocates a
new virtual server for the client. Before starting the virtual
server, the surrogate manager adds the client’s public key to
the /root/.ssh/authorized keys file in the virtual
server’s root directory. This public key is used by the virtual
server to determine which clients are authorized to use it. In
addition, by placing the client’s public key in this file, the
client can login to the server directly using a normal ssh
client, without a password, and manually install and start
services using normal command line tools. The client uses
the same RSA key pair for TLS sessions with the surro-
gate manager and subsequent ssh sessions with the virtual
server, because it allows the client to manage only one key
pair instead of two. For TLS sessions, the client can use
a self-signed certificate without compromising security be-
cause the surrogate manager ensures that the client’s public
key is in its authorized list.

After allocating the new virtual server instance, the sur-
rogate manager sends the IP address of the virtual server
along with its public host key to the client, which stores the
public key in its known hosts file. Transferring the pub-
lic host key of the virtual server to the client ensures that
subsequent ssh sessions established from the client to the
virtual server are secure. Currently clients do not authenti-
cate servers. For the surrogate server to authenticate itself
to the client, the server must have its certificate signed by
a known authority, e.g., a certificate authority, which we do
not currently support. In the future we plan to have the ser-

www.manaraa.com

vice discovery server provide the public key of the surrogate
along with its IP address to eliminate the potential problem
of surrogate masquerading. In such a case, the surrogate
server can also use a self-signed certificate.

To perform a Sub Task Configuration Request, the client
uses ssh to remotely execute the virtual server manager
(VSM) on the surrogate virtual server. The arguments to the
VSM are a URL and the MD5 checksum of the file specified
by the URL. In response, the VSM downloads the program
from the URL and verifies the MD5 checksum before run-
ning it. In practice, the program usually consists of a shell
script that downloads the necessary software/packages, in-
stalls them and then invokes them.

4.2. User Certified Client Devices

The simple public key authorization mechanism de-
scribed above is effective, but it requires that each surrogate
server be configured with a list of all authorized clients’
public keys. As the number of servers and client devices
grows, maintaining these lists will become a nuisance or
could drive people to reduce security by using the same keys
on all devices.

To address this problem, we support user certified client
devices wherein each user has a single global public/private
key pair that is used to identify them to potential surrogates.
Surrogate servers maintain a list of the public keys of au-
thorized users, not authorized client devices. When a user
installs a new device, the user signs the new device’s cer-
tificate. Subsequently when the device contacts the surro-
gate manager, it uses the user-signed certificate instead of a
self-signed certificate to prove that the device belongs to the
user. As a result, the surrogate server need only be config-
ured with a list of the public keys of authorized users, not a
separate key for each authorized client device.

5. Experimental Evaluation

In this section we evaluate our cyber foraging infrastruc-
ture using two applications, the sphinx2 speech recogni-
tion system and a synthetic web services application. We
chose these two applications to investigate the value of of-
floading work to surrogates for both compute-intensive ap-
plications (sphinx2) and network-intensive applications
(the synthetic web services application).

5.1. Experimental Setup

For our experiments, our surrogate platform is a Dell Di-
mension 4550 Series Computer with a 2.40-GHz P4 pro-
cessor and 512MB of RAM. The client is a Sharp Zau-
rus SL-5500 PDA running Linux 2.4.6-rmk1-np2-embedix
(OpenZaurus distribution 3.2). The Zaurus has a 206-MHz

SA1110 processor, 16MB of FlashRAM, and 64MB of
DRAM, 24MB of which is dedicated to file storage. It
connects to its LAN via a Linksys WCF12 compact flash
802.11b wireless card. For all experiments, the surrogate
machine is connected directly to the CS department LAN.
To test the importance of physical proximity between the
client and surrogate, we move the client between the CS de-
partment LAN and the first author’s home LAN, which is
connected to the Internet via a cable modem. When the Za-
urus is connected to the CS department LAN, the RTT be-
tween the client and surrogate varies from 2-3ms, whereas
when the Zaurus is connected to the home LAN, the RTT
between the client and surrogate varies from 72-73ms.

For each of our two applications, we run two sets of ex-
periments, one in which the application is run in its entirety
on the PDA and one in which the resource-intensive portion
of the application is dynamically instantiated on the surro-
gate node. We first report the time required to initialize the
surrogate service, including the time to perform service dis-
covery, instantiate a new virtual server, and install and start
the test application. We then report the run times and energy
consumed by the PDA to run the application both locally
and with the help of a surrogate. For experiments where we
run the application entirely on the PDA, we disable the net-
work card and LCD backlight to minimize energy drain. In
contrast, when we execute the resource-intensive portions
of the application on the surrogate, we leave the network
card enabled, which results in a conservative estimate of the
energy requirement. In both situations, the PDA is idle other
than the test application and an instance of top, a system
management tool that we use to extract CPU and memory
utilization.

To determine the amount of energy consumed by each
experiment by the PDA, we use its power management
interfaces to extract coarse-grained battery measurements
(e.g., start at 100% battery life and end at 85% battery life).
Because the battery appears to discharge in a non-linear
fashion, we fully charge the battery before each experiment
and run the experiment enough times to drain at least 15%
of total battery capacity. We then report the average amount
of energy consumed by a single run.

5.2. Sphinx Speech Recognition

Sphinx2 [8] is a real-time, large-vocabulary, speaker-
independent speech recognition system developed at CMU.
It uses pre-made acoustic models for American English:
an acoustic model, a pronunciation dictionary, and a lan-
guage model. These models are stored in several files that
in aggregate are roughly 23MB in size. When sphinx2
is loaded and run completely on the Zaurus, storing 23MB
worth of model files requires deleting most other applica-
tions and user files from the Zaurus’s tiny file server. In

www.manaraa.com

contrast, the client stub required to run sphinx2 on the
surrogate server is only 12KB in size.

To perform this experiment, we created two versions of
sphinx2, one that ran entirely on the Zaurus and another
that split the functionality between the Zaurus and the surro-
gate. For both, we used the sphinx-2.0.4 source code
from sourceforge. Porting sphinx2 to run on the Zau-
rus required non-trivial effort because it uses non-standard
sound driver settings and the Zaurus sound driver did not
support many of the ioctl calls used by sphinx2. Once
ported, it was relatively straightforward to divide the ap-
plication into two components for use in our surrogate in-
frastructure. The client portion uses the system calls de-
scribed in Section 3.5 to allocate a virtual server and instan-
tiate and instance of the sphinx2 server. It then records
what the user says and sends the raw digitized sound data
to the surrogate for analysis. We believe this development
experience will be typical for surrogates – most of the work
is involved in porting your application to the small device,
whereas splitting the application to exploit cyber foraging
is straightforward.

Client Location Linux-Vserver Xen
Univ 4.22 (0.44)s 12.43 (1.78)s
Home 4.41 (0.35)s 12.57 (1.57)s

Table 1. Average response time for allocating
and initializing a virtual server. Standard de-
viations are in parentheses.

Client Location Linux-Vserver Xen
Univ .37 (.043)s .30 (.021)s
Home .78 (.027)s .74 (.025)s

Table 2. Average response time for instan-
tiating sphinx2 speech recognition engine.
Standard deviations are in parentheses.

5.2.1. Experiments For our first set of experiments, we
measure how long it takes to acquire a new virtual server
and how long it takes to load and instantiate the sphinx2
surrogate on the newly allocated virtual server. We use pub-
lic key authentication for these experiments. Prior to the ex-
periment, we enter the user’s public key in the surrogate ma-
chine’s list of allowed clients. For all experiments, the input
utterance was a pre-recorded sound sample of the phrase,
“‘Go Forward 10 meters”.

Table 1 shows the time needed to acquire a virtual server
for both flavors of surrogate (Vserver and Xen). The time

to allocate and initialize a new virtual server is largely in-
dependent of whether the client is co-located on the same
LAN or connecting remotely, because most of the time is
due to virtual server startup. It takes about three times
as long to allocate and initialize a virtual server on Xen
compared to Vserver (12.4-12.6 secs versus 4.2-4.4 secs),
because Xen needs to boot a new kernel whereas virtual
servers on Vserver share a single kernel. The virtual server
acquisition is done only once during a session, so this 4-
12 second overhead is largely transparent to the user. The
startup overhead could be reduced by keeping a pool of pre-
booted virtual servers on the surrogate, ready for allocation.

Table 2 shows the time to download and instantiate
a sphinx2 surrogate, which entails downloading the
sphinx2 server software (6.3MB) and starting the server.
For this experiment, the server software was stored on on
the same LAN as the surrogate computer. It takes well un-
der a second in all circumstances - the slightly higher over-
head of instantiating sphinx2 when the PDA is remote is
due to the higher latency between the client and surrogate.

Table 3 compares the results of running the speech rec-
ognizer on the Zaurus and on the surrogate machine. The
performance differences are striking. When run on the Za-
urus, it takes almost two minutes to recognize the 4-word
utterance, far slower than real time. In contrast, the sur-
rogate version can recognize the phrase in under a second
when the client and surrogate share the same LAN, or in
just over two seconds when invoked remotely. The slower
response time when the operation is invoked from a home
LAN is due almost entirely to the low upload bandwidth cap
imposed by the cable modem server (roughly 25 KB/sec).
The raw audio data file is 44 KB in size and requires just un-
der two seconds to transfer to the remote surrogate, which
closely matches the difference in response times.

In addition to dramatically reducing the recognition
time, using a surrogate also dramatically reduces resource
consumption on the Zaurus. As mentioned above, simply
storing the sphinx2 application and model files on the
Zaurus required deleting most of the other applications and
data from the Zaurus. Also, when run locally, sphinx2
utilized more than 95% of the Zaurus’ CPU throughout the
experiment, spiking as high as 98.8%, and occupied more
than 50% of its memory. This left the PDA unusable for any
other activity, and resulted in a popup warning, “The Mem-
ory is very low, Please end this application immediately!”.
In contrast, using a surrogate reduced the CPU and memory
overheads to 0.3-0.5% and 1.1%, respectively, leaving the
Zaurus free to perform other tasks.

When we compare the energy cost of invoking the
speech recognizer locally versus on the surrogate, the re-
sults again strongly favor using a surrogate. Performing
speech recognition at a local surrogate consumes roughly 60
times less PDA energy while performing speech recognition

www.manaraa.com

Type Client - Server Response Time CPU Util Memory Util App Size Battery Util
local - 117.49 (0.96)s � 95% 51.6-55.9% 23MB 1.1 (0.08)%

Univ-Xen 0.69 (0.017)s .018 (0.001)%
cyber foraged Univ-Vserver 0.59 (0.021)s 0.3-0.5% 1.1% 12KB

Home-Xen 2.24 (0.018)s
Home-Vserver 2.31 (0.024)s .083 (0.006)%

Table 3. Sphinx2 speech recognition on the Zaurus. Standard deviations are in parentheses.

at a remote surrogate requires roughly 13 times less PDA
energy. These results come despite the fact that transferring
data across the wireless link requires a non-trivial amount of
energy. In addition, we do not use any power saving mode
for wireless card during the surrogate experiments, which
introduces energy drain not directly related to the experi-
ment. On the flip side, the PDA consumes roughly 0.3% of
its battery power when idle for two minutes, so a portion
of the 1.1% consumed by the local speech recognition ex-
periment constitutes a fixed cost. Nevertheless, it is clear
that for compute-intensive operations like speech recogni-
tion, cyber foraging has the potential to generate significant
energy savings.

In summary, these results clearly show that using a
surrogate can lead to dramatic improvements in both re-
sponse time and energy consumption for compute- and
storage-intensive applications like sphinx2. Cyber forag-
ing should be even more effective at reducing client energy
consumption if used in combination with a wireless LAN
driver optimized for energy consumption, e.g., by using
power saving modes to reduce energy consumption while
the network is idle [10].

5.3. Data Mining

Data mining or web services, which entail sifting
through potentially large amounts of data acquired from
one or more storage servers, are also well suited to cyber
foraging. In contrast with speech recognition, these types
of applications tend to be bandwidth-intensive rather than
compute-intensive. The amount of computation done per-
byte of data is much lower than for speech recognition.
Thus, the potential benefits of using a surrogate to perform
the data filtering include both the reduced processing time
and also reducing the amount of data transferred over the
energy-hungry wireless LAN.

To evaluate the impact of using a surrogate on this class
of applications, we designed the following synthetic bench-
mark. The benchmark entails downloading three 6.3 MB
files, performing an MD5 message digest operation on each
file, and outputting the resulting three checksum values. For
this experiment, the Zaurus and surrogate run on the same
LAN. When a surrogate is used, the client sends it URLs

for the three files, the surrogate downloads the three files
and computes their MD5 checksums, and then the surro-
gate returns the resulting values to the client. When the
surrogate is not used, we disable the wireless LAN card af-
ter the files have been downloaded to conserve energy, and
then perform the MD5 calculations locally.

Type Response Time Battery
local 61.47 (1.29)s 1.5 (0.109)%

cyber foraged 2.9 (0.066)s 0.06 (0.003)%
cyber foraged

(20s sleep) 24.4 (0.648)s 0.1 (0.008)%

Table 4. Synthetic Benchmark Results. Stan-
dard deviations are in parentheses.

Table 4 presents the results of these experiments. In the
default configuration, the web site hosting the three files re-
sides on the same LAN. In this case, downloading the files
to the Zaurus and performing the MD5 checksums locally
takes 21 times as long and consumes 25 times more bat-
tery energy. We then modified the surrogate experiment to
model the situation where the files are located across the In-
ternet and a non-trivial amount of time is required to down-
load them. For this experiment, the client disables its wire-
less LAN card and sleeps for 20 seconds after making the
request to the surrogate to conserve energy. After it wakes
up, it queries the surrogate for the results of the message
digest operations. In this case, the client consumes 15 times
less energy than if it had performed the checksum locally,
and half of that energy is the baseline energy drain for 24
seconds of operation. Again, despite this application hav-
ing a very different computation to communication ratio,
cyber foraging proves to be very valuable in terms of reduc-
ing response time and client energy consumption.

6. Conclusions and Future Work

In this paper, we have described the design and imple-
mentation of a lightweight secure cyber foraging infras-
tructure based on virtual machine technology. Our system

www.manaraa.com

allows us to forage compute, memory, storage, and net-
work resources securely from a surrogate PC. The surro-
gate mechanisms we propose are lightweight, do not re-
quire clients to run any special middleware software, and
generic. The preliminary experimental analysis show that
cyber foraging has great potential for reducing the response
time and energy requirements of running complex applica-
tions on (or for) resource-constrained devices. In particular,
cyber foraging enabled a PDA to perform real-time speech
recognition, which was impossible using only the PDA’s re-
sources. The growing interest in virtual machine technol-
ogy will likely reduce the performance overheads and could
lead to future Linux distributions where surrogate support
(in the form of a simple daemon) is standard.

We are working on ways to extend our work to untrusted
and wide area environments. For example, commercial wifi
hotspots could be augmented to support surrogate comput-
ing, enabling users with small devices like cell phones ac-
cess to significant compute and storage resources. Perhaps
more interesting, wide area deployment of a cyber foraging
infrastructure could give clients access to either a multitude
of servers on which they could perform Grid-like computa-
tions, or let clients invoke significant computation near large
data repositories like the SkyServer or TerraServer.

Using virtual servers and flexible authentication policies
addresses some, but not all, of the issues that arise in an un-
trusted or wide area environment. Current virtual machine
monitors do not provide administrators with sufficient con-
trol over their surrogate resources, especially in terms of the
network – without adequate controls, running a surrogate on
your site could let attackers circumvent your firewall protec-
tion or let them set up spam zombies. To support pervasive
(and especially commercial) deployment of surrogates, we
need to develop a cost model that enables clients and servers
to negotiate a “cost” for allocating a virtual server, e.g., as
part of a peering agreement or a micropayment. In addition,
the authentication and cost models will need to incorporate
the notion of varying degrees of trust, ranging from fully
trusted (a user’s home or office PC) to semi-trusted (a surro-
gate provided by a company with which the user has a busi-
ness relationship) to untrusted (a random user or surrogate).
Ultimately, we envision a system where, in addition to pro-
viding clients access to a user’s personal surrogates, clients
can negotiate very specific resource and location require-
ments (e.g., “I need access to a 200 MFLOP/s of computing
on a machine with sub-20msec latency and at least 30Mb/s
throughput connectivity of Google.com, and am willing to
pay up to $0.03 per minute for this service.”)

Although many challenges must be overcome before our
long term vision will come to fruition, our work has demon-
strated the basic value of cyber foraging and shown how it
can be used to enable interesting applications on small (po-
tentially embedded) devices. Even restricting surrogates to

the small set of fully trusted computers available to a user
or device, e.g., their home and office PC, enables interest-
ing applications and services without any new investment in
hardware or new security risks.

References

[1] Linux vserver project, available at http://www.linux-
vserver.org/.

[2] Class-based kernel resource management (ckrm),
http://ckrm.sourceforge.net/.

[3] R. K. Balan, M. Satyanarayanan, S. Park, and T. Okoshi.
Tactics-based remote execution for mobile computing. In 1st
Intl. Conf. on Mobile Systems, Applications, and Services,
2003.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,
A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. of the 19th ACM Sympo-
sium on Operating Systems Principles, October, 2003.

[5] J. Flinn, D. Narayanan, and M. Satyanarayanan. Self-tuned
remote execution for pervasive computing. In HotOS-VIII,
pages 61–66, 2001.

[6] J. Flinn, S. Park, and M. Satyanarayanan. Balancing perfor-
mance, energy, and quality in pervasive computing. In Proc.
of the 22nd Intl. Conf. on Distributed Computing Systems,
July, 2002.

[7] E. Guttman. Service location protocol: Automatic discovery
of IP network services. IEEE Internet Computing, 3(4):71–
80, 1999.

[8] X. Huang, F. Alleva, H.-W. Hon, M.-Y. Hwang, K.-F. Lee,
and R. Rosenfeld. The SPHINX-II speech recognition
system: an overview. Computer Speech and Language,
7(2):137–148, 1993.

[9] J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the coda file system. In 13th ACM Symposium on
Operating Systems Principles, 1991.

[10] R. Krashinsky and H. Balakrishnan. Minimizing energy for
wireless web access with bounded slowdown. In The 8th
Intl. Conf. on Mobile Computing and Networking, 2002.

[11] B. Mathew, A. Davis, and Z. Fang. A Low-Power Accelera-
tor for the SPHINX 3 Speech Recognition System. In Proc.
of the Intl. Conf. on Compilers, Architecture and Synthesis
for Embedded Systems, Oct 2003.

[12] A. Messer, I. Greenberg, P. Bernadat, D. S. Milojicic,
D. Chen, and T. J. Giuli. Towards a distributed platform
for resource-constrained devices. In Proc. of the 22nd Intl.
Conf. on Distributed Computing Systems, 2002.

[13] B. Noble, M. Satyanarayanan, D. Narayanan, J. Tilton,
J. Flinn, and K. Walker. Agile application-aware adapta-
tion for mobility. In Proc. of the 16th ACM Symposium on
Operating System Principles, Oct, 1997.

[14] E. Rescorla. SSL and TLS - Designing and Building Secure
Systems. Addison-Wesley, 2001.

[15] M. Satyanarayanan. Pervasive computing: Vision and chal-
lenges. IEEE Personal Communications, August 2001.

